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Electron transport in QCLs

Essential ingredients to model electron
transport in QCLs?

- Quantum confinement

- Scattering processes

1 period

Other ingredients:

- Coherent effects? (tunneling vs hopping between eigenstates)

- Broadening effects? is energy conserved for each scattering event?
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Outline

• Essential ingredients for modeling QCLs: electronic structure 
and scattering processes

• Different formalisms from semi-classical to quantum transport

• Development of a commercial NEGF simulator: nextnano.QCL

• New physical insights QCLs

• Rate equation for populations

• Density matrix

• Non-equilibrium Green’s functions (NEGF)
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Hamiltonian of an electron in a QCL
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Hamiltonian of a single charge carrier (3D problem)

photons

phonons
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Hamiltonian of an electron in a QCL

3D

• Interface roughness
• Alloy disorder
• Charged impurity scattering

➢ Separate into an exactly solvable part and a scattering part (treated in perturbation)

1D Schrödinger 
equation

2D free 
motion
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Ideal case: 1D and 2D motions decoupled
z
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Free in-plane motion: subbands

Eigenstates = Wannier-Stark states

If no scattering: no transport, 
only Bloch oscillations
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Scattering procees
z
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Free in-plane motion: subbands

Eigenstates = Wannier-Stark states

Scattering processes couple the 
1D and 2D motions
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Non-radiative scattering processes

From Jirauschek & Kubis (2014)

▪ Disorder effects that breaks the 2D invariance induces elastic
scattering processes

▪ Charged impurities (ionized dopants)
▪ Alloy disorder
▪ Rough interfaces

▪ Coupling to phonons: inelatic scattering
processes

▪ Optical phonons
▪ Acoustic phonons (usually very weak)
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▪ Electron-electron scattering

Non-radiative scattering processes

▪ Conservation of total energy and total 
momentum: inelastic process for a given
electron but energy conservation in total
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Non-radiative scattering processes

Elastic scattering processes alone?

▪ Combination of elastic and inelastic scattering processes

Intersubband elastic process
+ intrasubband inelastic process

infinitely increasing electron temperature
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Outline

• Essential ingredients for modeling QCLs: electronic structure and 
scattering processes

• Different formalisms from semi-classical to quantum transport

• Development of a commercial NEGF simulator: nextnano.QCL

• New physical insights QCLs

• Rate equation for populations

• Density matrix

• Non-equilibrium Green’s functions (NEGF)
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Rate equations for populations

in steady state

Scattering rates can be calculated using Fermi Golden rule.
For elastic processes:

➢Convenient expression of scattering rate
➢ Ensemble Monte-Carlo method can be used
➢ Fast simulations

elastic

elastic
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Rate equations for populations

… but problem for describing resonant tunneling

Transport time = injection time + extraction time

Tunneling time does not depend on the barrier thickness!

inj

extr

Rate equation approach works only if tunneling processes faster than scattering processes
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Resonant tunneling

Wannier-Stark states Tight-binding states (decoupling states 
from left and right from the barrier)

Tunneling rate = in the coherent case

in the incoherent case (Fermi golden rule)= 
Thomas Grange, nextnano IQCLSW 2018 14



Spatially decoupling the wavefunctions into different modules:
- rate equation for populations inside each module
- tunneling rate between modules

Hybrid approach

Active region

Injection region

Injection

Limitation: arbitrary distinction needed between tunneling and scattering processes

Kazarinov and Suris, 1972
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• Basis invariance using equations for the full density matrix

Density matrix

Two existing approaches:
▪ Lindblad equation with phenonenological parameters for 

dephasing
Williams, Kumar

▪ Perturbative treatment of scattering processes
Iotti & Rossi, Terrazi et al
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Time-energy uncertainty

Sequential scattering processes
(rate equation / density matrix)

Energy conservation is enforced for 
each scattering process

Green’s functions: energy-resolved
description

But we know that

Account for high-order processes
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Non-equilibrium Green’s functions (NEGF)
In steady-state transport, two independent quantities

Retarded Green’s function:
Imaginary part

Lesser Green’s function: 
energy-resolved density matrix

Energy-resolved carrier density

Spectral function (i.e. density of states)
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Coupling between Green’s functions

ScatteringElectron distribution

Density of state

➢ The density of state and the electron distribution needs to be solved
self-consistently
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Solving self-consistent NEGF equations

Final solution

Retarded Green’s function

GR

Mean-field electrostatic 
potential

Lesser Green’s function

G<

Self-energies
describing
scattering

ΣR, Σ<
Dyson equation

Keldysh
equation

Self-consistent 
Born approx. for
scattering

Initial guess

Density Optical gain

Poisson’s equation

Current

Implementation of NEGF in QCLs: Lee & Wacker (2002)
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Linewidths of radiative transitions

T. Ando (1985):

Broadening of radiative transitions:

Intersuband
scattering
(lifetime limit)

Pure dephasing arises from
the difference in 
intrasubband scattering.

➢ Linewidth can be smaller than individual subband broadening if 
intrasubband processes are correlated

➢ NEGF: self-consistent calculation of gain needed to account for these
correlation effects
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Outline

• Essential ingredients for modeling QCLs: electronic structure and 
scattering processes

• Different formalisms from semi-classical to quantum transport

• Development of a commercial NEGF simulator: nextnano.QCL

• New physical insights QCLs

• Rate equation for populations

• Density matrix

• Non-equilibrium Green’s functions (NEGF)

Thomas Grange, nextnano IQCLSW 2018 22



nextnano.QCL

Scattering processes
- Charged impurities
- Interface roughness
- Alloy disorder
- Electron-electron
- Optical phonons
- Acoustic phonons

Electronic structure

- Effective mass approximation 
with non-parabolicity

- Wurzite materials (piezo and 
pyro-electric effects)

- Group IV materials

NEGF solver

Input file:
• Heterostructure geometry
• Material parameters
• Simulation parameters

(energy grid, …)

Simulation results
• Physical observables 

(current density,  gain)
• Analysis in different basis
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Input file
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Visualization of results
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Visualization of results
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Analysis of results

Wannier-Stark basis Tight-binding basis Local basis

• Analysis of populations, density matrix, oscillator
strengths etc in different basis

Active region

Injection 
region

➢Analysis of the physics in the more adapted/intuitive basis
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Comparison with experimental data

Lasing threshold
assuming cavity
losses of 27/cm

Maximum operating temperature

Current threshold vs temperatureCurrent-voltage characteristics

No phenomenological fitting parameter
Only material parameters: Conduction band offsets, 
interface roughness

THz QCL of Fathololoumi et al (record temperature of 200 K)

THz QCL of Amanti et al (2010)
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Outline

• Essential ingredients for modeling QCLs: electronic structure and 
scattering processes

• Different formalisms from semi-classical to quantum transport

• Development of a commercial NEGF simulator: nextnano.QCL

• New physical insights QCLs

• Rate equation for populations

• Density matrix

• Non-equilibrium Green’s functions (NEGF)
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Analyse the physics

Input file: Possibility to tune individual scattering processes

▪ LO-phonons
▪ Charged impurities
▪ Interface roughness
▪ …

➢ New physical insights
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Coulomb scattering: a major source of broadening

Full calculation

• Coulomb scattering processes are a dominant source of dephasing
• Transition from coherent to incoherent tunneling

Without e-impurity nor e-e scattering
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Ionized impurities

Coulomb potential created by a ionized impurity

Efficient scattering
between closed subbands

Slow scattering
between distant 
subbands
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Influence of doping density on THz QCL

T. Grange, PHYSICAL REVIEW B 92, 241306(R) (2015)

Current

Gain

➢ Explanation of the contrasting influence of doping density on 
current (linear) and gain (non-linear)
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Leakage into the continuum

➢ Tune the number of minibands considered in the simulation

4 minibands

7 minibands

10 minibands

Current-voltage characteristics

➢ Clear identification of the 
leakage into the high-energy
states
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Influence of interface roughness

Impact of interface roughness on mid-infrared QCL 
Design of Yu et al, SST 2010

Increasing
interface 
roughness

Gain spectrum

➢ Gain in MIR QCL 
very sensitive to 
interface roughness
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Decoupling THz transitions from LO phonons?

Decoupling THz radiative transition from optical phonons. Two possible 
strategies:

▪ Using non-polar materials: no polar (Fröhlich) coupling in group IV 
materials (Ge/SiGe)

▪ Using a material with a high optical phonon energy (e.g. GaN)
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Ge/SiGe THz QCL?

See posters:
- D. Stark
- C. Ciano
- T. Grange

➢ Increasing temperature robustness with decreasing coupling to optical
phonons

Temperature dependence of gain : GaAs/AlGaAs vs Ge/SiGe
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Optical phonons in GaN

See talk of Ke Wang (Friday)

Broadening in GaN THz QCL is not limited
by LO-phonon

K Wang et al, APL 2018

▪ Large LO-phonon energy (90 meV)
▪ But Fröhlich constant 16 times stronger than 

in GaAs
Is LO-phonon induced broadening a limitation?
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• Different transport models available for QCLs from semiclassical to 
fully quantum

• NEGF allows an accurate description of both quantum transport 
and scattering processes

• Predictive simulations with nextnano.QCL
www.nextnano.com/nextnano.QCL

• Explore new material systems and new physics: tuning optical
phonons with group IV and nitride materials

• Further improvement: transport under lasing action

Summary
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