8th International Quantum Cascade Laser School and Workshop (IQCLSW 2018) Cassis, France

Modeling electron transport in quantum cascade lasers

Thomas Grange, nextnano GmbH

Electron transport in QCLs

Essential ingredients to model electron transport in QCLs?

- Quantum confinement
- Scattering processes

Other ingredients:

- Coherent effects? (tunneling vs hopping between eigenstates)
- Broadening effects? is energy conserved for each scattering event?

Outline

- Essential ingredients for modeling QCLs: electronic structure and scattering processes
- Different formalisms from semi-classical to quantum transport
 - Rate equation for populations
 - Density matrix
 - Non-equilibrium Green's functions (NEGF)
- Development of a commercial NEGF simulator: nextnano.QCL
- New physical insights QCLs

Hamiltonian of an electron in a QCL

Hamiltonian of a single charge carrier (3D problem)

$$H = H_{\rm e}^{\rm 3D} + H_{\rm e-e} + H_{\rm e-phonon} + H_{\rm e-phonon}$$

Hamiltonian of an electron in a QCL

$$H = H_{\rm e}^{\rm 3D} + H_{\rm e-e} + H_{\rm e-phonon} + H_{\rm e-phonon}$$

Separate into an exactly solvable part and a scattering part (treated in perturbation)

Ideal case: 1D and 2D motions decoupled

$$H_e(z) = \frac{\hat{p}_z^2}{2m^*} + \hat{V}(z) - eF\hat{z}$$

Eigenstates = Wannier-Stark states

If no scattering: no transport, only Bloch oscillations

Free in-plane motion: subbands

Scattering procees

$$H_e(z) = \frac{\hat{p}_z^2}{2m^*} + \hat{V}(z) - eF\hat{z}$$

Eigenstates = Wannier-Stark states

Free in-plane motion: subbands

Scattering processes couple the 1D and 2D motions

Non-radiative scattering processes

- Disorder effects that breaks the 2D invariance induces elastic scattering processes
 - Charged impurities (ionized dopants)
 - Alloy disorder
 - Rough interfaces

- Coupling to phonons: inelatic scattering processes
 - Optical phonons
 - Acoustic phonons (usually very weak)

Non-radiative scattering processes

Electron-electron scattering

 Conservation of total energy and total momentum: inelastic process for a given electron but energy conservation in total

Non-radiative scattering processes

Elastic scattering processes alone?

infinitely increasing electron temperature

Combination of elastic and inelastic scattering processes

Intersubband elastic process + intrasubband inelastic process

Thomas Grange, nextnano

IQCLSW 2018

Outline

- Essential ingredients for modeling QCLs: electronic structure and scattering processes
- Different formalisms from semi-classical to quantum transport
 - Rate equation for populations
 - Density matrix
 - Non-equilibrium Green's functions (NEGF)
- Development of a commercial NEGF simulator: nextnano.QCL
- New physical insights QCLs

Rate equations for populations

Scattering rates can be calculated using Fermi Golden rule. For elastic processes:

$$\frac{1}{\tau_{(i,k)\to j}^{\text{elastic}}} = \frac{2\pi}{\hbar} \sum_{k'} \langle i, k | H_{\text{scatt}}^{\text{elastic}} | j, k' \rangle \delta\left(E_i + \frac{\hbar^2 k^2}{2m^*} - E_j - \frac{\hbar^2 k'^2}{2m^*} \right)$$

Convenient expression of scattering rate
Ensemble Monte-Carlo method can be used
Fast simulations

Thomas Grange, nextnano

IQCLSW 2018

Rate equations for populations

... but problem for describing resonant tunneling

Transport time = injection time + extraction time

Tunneling time does not depend on the barrier thickness!

Rate equation approach works only if tunneling processes faster than scattering processes

Thomas Grange, nextnano

IQCLSW 2018

Resonant tunneling

Tunneling rate = Ω in the coherent case

= $2\pi\hbar\Omega^2\rho(E)$ in the incoherent case (Fermi golden rule)

Thomas Grange, nextnano

Hybrid approach

Spatially decoupling the wavefunctions into different modules:

- rate equation for populations inside each module
- tunneling rate between modules

Kazarinov and Suris, 1972

Limitation: arbitrary distinction needed between tunneling and scattering processes

IQCLSW 2018

Density matrix

• Basis invariance using equations for the full density matrix

$$-i\hbar\frac{\partial\rho}{\partial t} = [\rho, H]$$

Two existing approaches:

- Lindblad equation with phenonenological parameters for dephasing Williams, Kumar
- Perturbative treatment of scattering processes lotti & Rossi, Terrazi et al

Time-energy uncertainty

Sequential scattering processes

(rate equation / density matrix)

Energy conservation is enforced for each scattering process

Green's functions: energy-resolved description

Account for high-order processes

But we know that
$$\delta t \delta E \geq \frac{\hbar}{2}$$

Non-equilibrium Green's functions (NEGF)

In steady-state transport, two independent quantities

Coupling between Green's functions

The density of state and the electron distribution needs to be solved self-consistently

Solving self-consistent NEGF equations

Linewidths of radiative transitions

Broadening of radiative transitions:

Linewidth can be smaller than individual subband broadening if intrasubband processes are correlated

NEGF: self-consistent calculation of gain needed to account for these correlation effects Thomas Grange, nextmano

Outline

- Essential ingredients for modeling QCLs: electronic structure and scattering processes
- Different formalisms from semi-classical to quantum transport
 - Rate equation for populations
 - Density matrix
 - Non-equilibrium Green's functions (NEGF)
- Development of a commercial NEGF simulator: nextnano.QCL
- New physical insights QCLs

nextnano.QCL

Input file:

- Heterostructure geometry
- Material parameters
- Simulation parameters (energy grid, ...)

Scattering processes

- Charged impurities
- Interface roughness
- Alloy disorder
- Electron-electron
- Optical phonons
- Acoustic phonons

Electronic structure

- Effective mass approximation with non-parabolicity
- Wurzite materials (piezo and pyro-electric effects)
 - Group IV materials

NEGF solver

Simulation results

- Physical observables (current density, gain)
- Analysis in different basis

Input file

n) nextnanomat - C:\Results\THz_QCL_GaAs_AlGaAs_Amanti09\THz_QCL_GaAs_AlGaAs_Amanti09.xml	an - th	đ	\times
File Edit Run View Tools Help			
Inout Template Bun Output New Template			
input rempiles han subject new rempiles			
THz_QCL_GaAs_A/GaAs_Amanti09.xml			
- E 💕 🛃 😹 🎒 X 🖻 🕮 🕐 🗱 🛃	2.2		
			~
<material></material>			
<name>Al(x)Ga(1-x)As</name>			
<alloy_composition>0.15</alloy_composition>			
<alias>barrier</alias>			
<effective_mass_from_kp_parameters>yes</effective_mass_from_kp_parameters>			
(NonParabolicity)week/NonParabolicity)			
<pre></pre>			
<td></td> <td></td> <td></td>			
<superlattice></superlattice>			
<layer></layer>			
<material>barrier</material>			
<thickness unit="nm">4.2</thickness>			
<layer></layer>			
<material>well</material>			
<thickness unit="nm">18.4</thickness>			
<layer></layer>			
<pre></pre>			
<material>well</material>			
<thickness unit="nm">11.0</thickness>			
<layer></layer>			
<material>barrier</material>			
<thickness unit="nm">1.8</thickness>			
			~
<			>
Ln 70 Col 10 input file for nextnano.QCL			

Visualization of results

IQCLSW 2018

Visualization of results

n) nextnanomat - C:\Results\THz_QCL_GaAs_AlGaAs_Amanti09\THz_QCL_GaAs_AlGaAs_Amanti09.xml

– 0 ×

IQCLSW 2018

Analysis of results

• Analysis of populations, density matrix, oscillator strengths etc in different basis

> Analysis of the physics in the more adapted/intuitive basis

Comparison with experimental data

THz QCL of Fathololoumi et al (record temperature of 200 K)

Current-voltage characteristics

Lasing threshold assuming cavity losses of 27/cm

Current threshold vs temperature

Maximum operating temperature

THz QCL of Amanti et al (2010)

No phenomenological fitting parameter

Only material parameters: Conduction band offsets, interface roughness

IQCLSW 2018

Outline

- Essential ingredients for modeling QCLs: electronic structure and scattering processes
- Different formalisms from semi-classical to quantum transport
 - Rate equation for populations
 - Density matrix
 - Non-equilibrium Green's functions (NEGF)
- Development of a commercial NEGF simulator: nextnano.QCL
- New physical insights QCLs

Input file: Possibility to tune individual scattering processes

- LO-phonons
- Charged impurities
- Interface roughness

New physical insights

Coulomb scattering: a major source of broadening

- Coulomb scattering processes are a dominant source of dephasing
- Transition from coherent to incoherent tunneling

Ionized impurities

Coulomb potential created by a ionized impurity

Influence of doping density on THz QCL

T. Grange, PHYSICAL REVIEW B 92, 241306(R) (2015)

Explanation of the contrasting influence of doping density on current (linear) and gain (non-linear) Thomas Grange, nextnano

Leakage into the continuum

Tune the number of minibands considered in the simulation

4 minibands

Position (nm)

Influence of interface roughness

Impact of interface roughness on mid-infrared QCL Design of Yu et al, SST 2010

Decoupling THz transitions from LO phonons?

Decoupling THz radiative transition from optical phonons. Two possible strategies:

- Using non-polar materials: no polar (Fröhlich) coupling in group IV materials (Ge/SiGe)
- Using a material with a high optical phonon energy (e.g. GaN)

Ge/SiGe THz QCL?

Temperature dependence of gain : GaAs/AlGaAs vs Ge/SiGe

Increasing temperature robustness with decreasing coupling to optical phonons

See posters:

- D. Stark
- C. Ciano
- T. Grange

Optical phonons in GaN

- Large LO-phonon energy (90 meV)
- But Fröhlich constant 16 times stronger than in GaAs

Is LO-phonon induced broadening a limitation?

Broadening in GaN THz QCL is **not** limited by LO-phonon

See talk of Ke Wang (Friday)

Summary

- Different transport models available for QCLs from semiclassical to fully quantum
- NEGF allows an accurate description of both quantum transport and scattering processes
- Predictive simulations with nextnano.QCL <u>www.nextnano.com/nextnano.QCL</u>
- Explore new material systems and new physics: tuning optical phonons with group IV and nitride materials
- Further improvement: transport under lasing action

Acknowledgements

- Zoltán Jéhn, Carola Burkl, Alexander Wirthmüller, Stefan Birner (nextnano)
- Michele Virgilio, Giacomo Scalari, Douglas Paul, Giovanni Capellini, Monica DeSeta (FLASH consortium)
- Ke Wang, Li Wang, Tsung-Tse Lin, Joosun Yun, Hideki Hirayama (RIKEN)

