User Tools

Site Tools


nnm:faq

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
nnm:faq [2022/01/18 15:25]
carola.burkl [Can I take advantage of parallelization of the nextnano software on multi-core CPUs?]
nnm:faq [2022/01/18 16:38]
carola.burkl
Line 2: Line 2:
  
 New documentation for FAQ https://​www.nextnano.com/​manual/​faq/​index.html New documentation for FAQ https://​www.nextnano.com/​manual/​faq/​index.html
- 
- 
- 
- 
- 
- 
- 
- 
- 
-= 
- 
- 
-==== I don't understand the $\bf{k} \cdot \bf{p}$ parameters ==== 
- 
-In the literature, there are two different notations used: 
-  * Dresselhaus--Kip--Kittel (DKK): $L$, $M$, $N^+$, $N^-$ (zinc blende); $L_1$, $L_2$, $M_1$, $M_2$, $M_3$, $N_1^+$, $N_1^-$, $N_2^+$, $N_2^-$ (wurtzite) 
-  * Luttinger parameters: $\gamma_1$, $\gamma_2$, $\gamma_3$, $\kappa$ (zinc blende); Rashba--Sheka--Pikus (RSP) parameters $A_1$, $A_2$, $A_3$, $A_4$, $A_5$, $A_6$, $A_7$ (wurtzite) 
-They are equivalent and can be converted into each other. 
- 
-Some authors only use 3 parameters $L$, $M$, $N$ (or $\gamma_1$, $\gamma_2$, $\gamma_3$) which is fine for bulk semiconductors without magnetic field but not for heterostructures because the latter require 4 parameters, i.e. $N^+$, $N^-$ (instead of $N$ only) or $\kappa$. If these parameters are not known, they can be approximated. 
- 
-There are different $\bf{k} \cdot \bf{p}$ parameters for 
-  * 6-band $\bf{k} \cdot \bf{p}$ and 
-  * 8-band $\bf{k} \cdot \bf{p}$. 
-The 8-band $\bf{k} \cdot \bf{p}$ parameters can be calculated from the 6-band parameters taking into account the temperature dependent band gap $E_{\rm gap}$ and the Kane parameter $E_{\rm P}$ (zinc blende). For wurtzite the parameters are $E_{\rm gap}$ and the Kane parameters $E_{{\rm P}1}$, $E_{{\rm P}2}$. 
- 
-The 8-band Hamiltonian also needs the conduction band mass parameter $S$ (zinc blende) or $S_1$, $S_2$ (wurtzite). 
-They can be calculated from the conduction band effective mass $m_{\rm c}$, the band gap $E_{\rm gap}$, the spin-orbit split-off energy $\Delta_{\rm so}$ and the Kane parameter $E_{\rm P}$ (zinc blende). 
-For wurtzite the parameters are $m_{{\rm c},​\parallel}$,​ $m_{{\rm c},\perp}$, $E_{\rm gap}$, $\Delta_{\rm so}$, the crystal-field split-off energy $\Delta_{\rm cr}$ and the Kane parameters $E_{{\rm P}1}$, $E_{{\rm P}2}$. 
- 
-Finally there is the inversion asymmetry parameter $B$ for zinc blende. For wurtzite there are $B_1$, $B_2$, $B_3$. 
- 
-For more details on these equations, please refer to Section //3.1 The multi-band $\bf{k} \cdot \bf{p}$ Schrödinger equation// in the [[http://​www.nextnano.com/​downloads/​publications/​PhD_thesis_Stefan_Birner_TUM_2011_WSIBook.pdf|PhD thesis of S. Birner]]. 
- 
-=== Spurious solutions === 
-Some people rescale the 8-band $\bf{k} \cdot \bf{p}$ in order to avoid //spurious solutions//​. 
-The 8-band $\bf{k} \cdot \bf{p}$ parameters can be calculated from the 6-band parameters taking into account the band gap $E_{\rm gap}$, the spin-orbit split-off energy $\Delta_{\rm so}$ and the Kane parameter $E_{\rm P}$ (zinc blende). For wurtzite the parameters are $E_{\rm gap}$, the spin-orbit split-off energy $\Delta_{\rm so}$, the crystal-field split-off energy $\Delta_{\rm cr}$ and the Kane parameters $E_{{\rm P}1}$, $E_{{\rm P}2}$. 
- 
-For more details, please refer to Section //3.2 Spurious solutions// in the [[http://​www.nextnano.com/​downloads/​publications/​PhD_thesis_Stefan_Birner_TUM_2011_WSIBook.pdf|PhD thesis of S. Birner]]. 
- 
-=== Specific implementation nextnano++ === 
-See section ''​kp_8band{}''​ in [[http://​www.nextnano.com/​nextnanoplus/​software_documentation/​input_file/​quantum.htm|quantum{}]]. 
- 
-=== Specific implementation nextnano³ === 
-  * See section //Choice of $\bf{k} \cdot \bf{p}$ parameters//​ in [[http://​www.nextnano.com/​nextnano3/​input_parser/​keywords/​numeric-control.htm|$numeric-control]]. 
-  * See section //$\bf{k} \cdot \bf{p}$ parameters//​ in [[http://​www.nextnano.com/​nextnano3/​input_parser/​database/​docu/​How-to-add-material-parameters.htm|Which material parameters are used?]]. 
-  * See section //​Luttinger-parameters//​ in [[http://​www.nextnano.com/​nextnano3/​input_parser/​keywords/​binary-zb-default.htm|$binary-zb-default]]. 
- 
----- 
- 
-==== How shall I cite the nextnano software in publications?​ ==== 
- 
-You can cite any of the following papers: 
-  * [[http://​dx.doi.org/​10.1109/​TED.2007.902871|nextnano:​ General Purpose 3-D Simulations]]\\ S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, P. Vogl \\ IEEE Trans. Electron Dev. **54**, 2137 (2007) 
-  * [[http://​dx.doi.org/​10.1007/​s10825-006-0005-x|The 3D nanometer device project nextnano: Concepts, methods, results]]\\ A. Trellakis, T. Zibold, T. Andlauer, S. Birner, R. K. Smith, R. Morschl, P. Vogl\\ J. Comput. Electron. **5**, 285 (2006) 
- 
-For simulations including electrolytes,​ you should cite: 
-  * [[http://​stacks.iop.org/​1742-6596/​107/​i=1/​a=012002|Theoretical model for the detection of charged proteins with a silicon-on-insulator sensor]]\\ S. Birner, C. Uhl, M. Bayer, P. Vogl\\ J. Phys.: Conf. Ser. **107**, 012002 (2008) ​ 
- 
-For simulations that use the Contact Block Reduction method (CBR) (ballistic transport), you should cite any of the following papers: 
-  * [[http://​dx.doi.org/​10.1063/​1.1560567|Efficient method for the calculation of ballistic quantum transport]]\\ D. Mamaluy, M. Sabathil, P. Vogl\\ J. Appl. Phys. **93**, 4628 (2003) 
-  * [[http://​dx.doi.org/​10.1007/​s10825-009-0293-z|Ballistic quantum transport using the contact block reduction (CBR) method - An introduction]]\\ S. Birner, C. Schindler, P. Greck, M. Sabathil, P. Vogl\\ J. Comput. Electron. **8**, 267 (2009) 
- 
-nextnano.MSB software: For simulations that use the multi-scattering Büttiker (MSB) probe model (NEGF), you should cite: 
-  * [[https://​doi.org/​10.1364/​OE.23.006587|Efficient method for the calculation of dissipative quantum transport in quantum cascade lasers]]\\ P. Greck, S. Birner, B. Huber, P. Vogl\\ Optics Express **23**, 6587 
- 
-nextnano.QCLsoftware:​ For simulations that use the NEGF method, you should cite: 
-  * [[http://​dx.doi.org/​10.1103/​PhysRevB.92.241306|Contrasting influence of charged impurities on transport and gain in terahertz quantum cascade lasers]]\\ T. Grange\\ Phys. Rev. B **92**, 241306(R) (2015) 
- 
-For simulations that use the NEGF algorithm included in the nextnano³ software, you should cite any of these publications:​ 
-  * [[http://​dx.doi.org/​10.1063/​1.4863665|Modeling techniques for quantum cascade lasers 
-]]\\ C. Jirauschek, T. Kubis\\ Appl. Phys. Rev. **1**, 011307 (2014) 
-  * [[https://​doi.org/​10.1103/​PhysRevB.79.195323|Theory of non-equilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers]]\\ T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, C. Deutsch\\ Phys. Rev. B **79**, 195323 (2009) 
- 
-There might be further papers in the literature that are more suited to be cited in certain cases. 
- 
-----