User Tools

Site Tools


nnp:piezoelectricity_in_wurtzite

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
nnp:piezoelectricity_in_wurtzite [2019/10/25 18:53]
stefan.birner [Piezoelectricity in wurtzite]
nnp:piezoelectricity_in_wurtzite [2020/01/27 15:40]
takuma.sato [Piezoelectricity in wurtzite]
Line 7: Line 7:
  
 === References === === References ===
-  * A.E. Romanov ​//et al//., Journal of Applied Physics **100**, 023522 (2006)+  * A.E. Romanov, T.J. Baker, S. Nakamura, and J.S. Speck, Journal of Applied Physics **100**, 023522 (2006)
   * S. Schulz and O. Marquardt, Phys. Rev. Appl. **3**, 064020 (2015)   * S. Schulz and O. Marquardt, Phys. Rev. Appl. **3**, 064020 (2015)
   * S.K. Patra and S. Schulz, Phys. Rev. B **96**, 155307 (2017)   * S.K. Patra and S. Schulz, Phys. Rev. B **96**, 155307 (2017)
Line 45: Line 45:
 We note that the expression in the third case includes the other two special cases. To approximate the direction with integer entries, we multiply 100 and take the floor function: We note that the expression in the third case includes the other two special cases. To approximate the direction with integer entries, we multiply 100 and take the floor function:
 <​code>​ <​code>​
 +$gamma = $c_InGaN / $a_InGaN # c/a ratio
 +                             # ideal c/a ratio in wurtzite is SQRT(8/​3)=1.63299
 $h = floor(100*sin(theta)) $h = floor(100*sin(theta))
-$= floor(100*2c*cos(theta)/​sqrt(3)a)+$= floor(100*2*gamma*cos(theta)/​sqrt(3))
 x_hkl = [$h, 0, $l]  # x axis perpendicular to (hkl) plane = (hkil) plane x_hkl = [$h, 0, $l]  # x axis perpendicular to (hkl) plane = (hkil) plane
 </​code>​ </​code>​
Line 146: Line 148:
 Analytical expression is derived as follows [Schulz2015]. Since we are interested in the polarization normal to the interface, it is useful to switch to the simulation coordinate system $(x', y', z')$. This can be done by transforming the polarization vector and the strain tensor to the simulation system, Analytical expression is derived as follows [Schulz2015]. Since we are interested in the polarization normal to the interface, it is useful to switch to the simulation coordinate system $(x', y', z')$. This can be done by transforming the polarization vector and the strain tensor to the simulation system,
 $$ $$
-P_{\mu'​}^{(1)}=\sum_{\mu=1}^3 R_{\mu'​\mu} P_\mu^{(1)},​\ \  +P_{\mu'​}^{(1)}=\left(R P^{(1)} \right)_{\mu'​}=\sum_{\mu=1}^3 R_{\mu'​\mu} P_\mu^{(1)},​\ \  
-\epsilon_{\mu'​\nu'​}=\sum_{\mu,​\nu=1}^3 R_{\mu'​\mu}R_{\nu'​\nu}\epsilon_{\mu\nu},​+\epsilon_{\mu'​\nu'​}=\left(R\epsilon R^{-1} \right)_{\mu'​\nu'​}=\sum_{\mu,​\nu=1}^3 R_{\mu'​\mu}R_{\nu'​\nu}\epsilon_{\mu\nu},​
 $$ $$
-where the $3\times3$ rotation matrix $R$ accounts for a rotation of angle $\theta$. Prime denotes the axes in simulation coordinate system. These equations can be expressed in vector form as+where the $3\times3$ rotation matrix $R$ accounts for a rotation of angle $\theta$ and we have used the fact that the rotation matrix is orthogonal: $(R^{-1})_{\mu\nu}=R_{\nu\mu}$. Prime denotes the axes in simulation coordinate system. These equations can be expressed in vector form as
 $$ $$
 \begin{pmatrix} \begin{pmatrix}