• Home
  • Company
  • Contact
  • Download
logo
nextnano Manual Logo
latest
pdf

Getting Started

  • About nextnano
  • Installation
    • First Steps
    • Operating system
      • Windows
      • Linux
        • nextnanomat on Linux
        • nextnano++ & nextnano³ on Linux
        • Wine Installation
      • MacOS
        • Option A: Run simulations from Terminal
        • Option B: Run simulations with nextnanopy
        • Option C: Run simulations with nextnanomat using Wine or Mono
    • Downloads
      • nextnano software
      • nextnano++ & nextnano³
      • nextnano.NEGF
      • nextnanomat
      • nextnano.MSB
    • Release Notes
      • Release notes of nextnanomat
        • 2022-08-05
      • Release notes of nextnano++
        • 2023-2-20
        • 2022-12-20
        • 2022-08-05
        • 2022-06-09
      • Release notes of nextnano3
        • 2022-12-20
        • 2022-08-05
      • Release notes of nextnano.NEGF
        • 2023-02-22 (first release of C++ version)
        • 2022-06-13
        • 2022-04-29
        • 2022-03-14
  • Digital Accessibility
    • Accessibility Statement for nextnano Software
      • Conformance status
      • Feedback
      • Compatibility with assistive technology
      • Limitations and alternatives
      • Assessment approach
    • Accessibility Evaluation Report for nextnano Software
      • Executive Summary
      • Scope of Review
      • Reviewers
      • Review Process
      • Results
        • Interpretative summary of review results
        • Detailed results
      • References

Products

  • 1. nextnanomat
    • 1.1. GUI tabs
      • 1.1.1. Input
        • Autocomplete feature
      • 1.1.2. Template
        • Variable definition in input file (required)
        • Sweep over a variable + optional post-processing
        • Post-processing of existing sweep
      • 1.1.3. Template (Beta)
        • Introduction
        • The input file
        • How to create a sweep
        • Save input files and run a sweep
      • 1.1.4. Simulation
      • 1.1.5. Output
        • Navigation
        • Visualization
        • Features
        • Export functionality
        • Further information
    • 1.2. Settings
      • 1.2.1. Options: Simulation
      • 1.2.2. Options: Material database
      • 1.2.3. Options: Licenses
      • 1.2.4. Options: Editor
      • 1.2.5. Options: View/Output
      • 1.2.6. Options: Expert settings
      • 1.2.7. Options: Gnuplot settings
      • 1.2.8. Options: Custom executable
        • Example: How to run TiberCAD from nextnanomat
      • 1.2.9. Options: Data export
    • 1.3. Main menu functions
      • 1.3.1. Activate license
      • 1.3.2. Convert nextnano³ input file to nextnano++
      • 1.3.3. Clean Up Simulation Output Folder
      • 1.3.4. Generate nextnanopy Config File
      • 1.3.5. Generate System Snapshot for Troubleshooting
    • 1.4. License activation
    • 1.5. Color maps
      • 1.5.1. Introduction
      • 1.5.2. Implementation
      • 1.5.3. References
  • 2. nextnano++
    • 2.1. Overview
      • 2.1.1. Running
      • 2.1.2. Input file
      • 2.1.3. Output
      • 2.1.4. Examples
      • 2.1.5. Material database
    • 2.2. Applications
      • 2.2.1. General
      • 2.2.2. Solar Cells
      • 2.2.3. Laser Diodes & LEDs
      • 2.2.4. Photodetectors
      • 2.2.5. QCLs
      • 2.2.6. Transistors
      • 2.2.7. Superlattices
      • 2.2.8. Quantum Wells
      • 2.2.9. Quantum Wires
      • 2.2.10. Quantum Dots
      • 2.2.11. 2DEGs
      • 2.2.12. Magnetic Field
      • 2.2.13. Nitrides
    • 2.3. Models
      • 2.3.1. Introduction to strain calculation
        • Strain tensor \(\varepsilon\)
        • Stress tensor \(\sigma\)
        • Strain and stress calculation
      • 2.3.2. 1D - Piezoelectricity in wurtzite
        • Specify crystal orientation
        • Parameter sweep of the angle using Template: Sweep over the variable theta
        • Strain
        • Piezoelectric effect (first-order)
        • Post-Processing for polarization
        • Alloy content dependence
        • AlGaN
        • Piezoelectric effect (second-order)
      • 2.3.3. General scheme of the optical device analysis
        • Related tutorials
        • Determination of carrier densities and current densities
        • Optoelectronic characteristics based on the semi-classical model
        • Optoelectronic characteristics based on the quantum model
        • References
    • 2.4. Benchmarking
      • 2.4.1. Schrödinger Equation
        • Parabolic Quantum Well (GaAs / AlAs)
        • 1D - Triangular well
        • 1D - InAs / GaSb broken gap quantum well (BGQW) (type-II band alignment)
        • 1D - Double Quantum Well
        • 1D - Exciton Binding Energy in an Infinite Quantum Well
        • k.p dispersion in bulk unstrained, compressively and tensely strained GaN (wurtzite)
        • k.p dispersion in bulk unstrained ZnS, CdS, CdSe and ZnO (wurtzite)
        • Energy dispersion of holes in a quantum well
        • Dispersion in infinite superlattices: Minibands (Kronig-Penney model)
        • Scattering times for electrons in unbiased and biased single and multiple quantum wells
        • 1D - Quantum-Cascade Lasers
        • Energy dispersion of a cylindrical shaped GaN nanowire
      • 2.4.2. System of Schrödinger & Poisson Equations
        • 1D - Schrödinger-Poisson - A comparison to the tutorial file of Greg Snider’s code
        • k.p dispersion of an unstrained GaN QW embedded between strained AlGaN layers
        • Si/ SiGe MODQW (Modulation Doped Quantum Well)
        • 1D - Intersubband transitions in InGaAs/AlInAs multiple quantum well systems
        • Two-dimensional electron gas in an AlGaN/GaN field effect transistor
        • Energy levels in a pyramidal shaped InAs/GaAs quantum dot including strain and piezoelectric fields
      • 2.4.3. System of Schrödinger, Poisson, & Current Equations
        • 1D - Multiple quantum wells and finite superlattices
      • 2.4.4. Optical Spectra using Fermi’s Golden Rule
        • 1D - SiGe QW excitonic absorption
        • 1D - SiGe MQW absorption modulator
        • 1D - Optics: Optical gain of InGaAs quantum wells with different strain
        • 1D - Optics: Optical gain and spontaneous emission rate of strained GaN quantum well
    • 2.5. Tutorials
      • 2.5.1. Syntax
        • 1D - Hello World
        • 1D - Finite Periodic Structures
        • 1D - Constant Doping
        • 1D - Adding and Replacing Doping
        • 1D - Doping Functions
        • 1D - Doping in Heterostructure
        • 1D - Variables
      • 2.5.2. Exercises
        • Band gap of strained AlGaInP on GaAs substrate
        • I-V Curves
        • 1D - Cascade solar cell (Tandem solar cell)
        • 1D - Transmission (CBR)
        • 1D - GaAs Solar Cell
        • HEMT structure (High Electron Mobility Transistor)
        • 1D - Intersubband absorption of an infinite quantum well
        • k.p dispersion in bulk GaAs (strained / unstrained)
        • 1D - Optical interband transitions in a quantum well - Matrix elements and selection rules
        • 1D - Optical intraband transitions in a quantum well - Intraband matrix elements and selection rules
        • 1D - Optical absorption for interband and intersubband transitions
        • 1D - pn Junction
        • Solution of the Poisson equation for different charge density profiles
        • Schottky barrier
        • 1D - Simple quantum cascade structure
        • 1D - InAs / In0.4Ga0.6Sb superlattice dispersion with 8-band k.p (type-II band alignment)
        • A) Schrödinger equation of a two-dimensional core-shell structure and B) Hexagonal 2DEG - Two-dimensional electron gas in a delta-doped hexagonal shaped GaAs/AlGaAs nanowire heterostructure
        • 2D - Electron Flying Qubit
        • 2D - Fock-Darwin states of a parabolic, anisotropic (elliptical) potential in a magnetic field
        • 2D - Fock-Darwin states of parabolic, isotropic potential in a magnetic field
        • 2D - Landau levels of a bulk GaAs sample in a magnetic field
        • 2D - MOS Capacitor & MOSFET
        • 2D - Interband absorption spectrum of a GaAs cylindrical quantum wire
        • 2D - Intersubband absorption spectrum of a GaAs cylindrical quantum wire
        • 2D - Electron wave functions in a cylindrical well (2D Quantum Corral)
        • 2D - Electron wave functions of a 2D slice of a Triple Gate MOSFET
        • 3D - Depletion of electrons in a two-dimensional electron gas (2DEG)
        • 3D - Transmission through a nanowire (CBR)
        • 3D - Conductance of a quantum point contact (gated two-dimensional electron gas)
        • 3D - Absorption spectrum of a GaAs spherical quantum dot
        • Energy levels in idealistic 3D cubic and cuboidal shaped quantum dots
        • Single-electron transistor - laterally defined quantum dot
        • Hole energy levels of an “artificial atom” - Spherical Si Quantum Dot (6-band k.p)
      • 2.5.3. Case Studies
        • 1D - InGaAs Multi-quantum well laser diode
        • 1D - UV LED: Quantitative evaluation of the effectiveness of EBL
        • 1D - UV LED: Quantitative evaluation of the effectiveness of superlattice structure in p-region
        • 3D - Quantum Dot Molecule
      • 2.5.4. Numerics
        • Convergence
        • Residuals
      • 2.5.5. Tricks & Hacks
        • 1D - C-V curve calculation for general structures (Post-processing by python)
        • 1D - Interband tunneling current in a highly-doped nitride heterojunction
        • 1D - Optical generation in InGaAs/GaAs QW
        • 1D - Photoluminescence of Quantum Well
    • 2.6. Reference
      • 2.6.1. Syntax definition
        • Use of variables, IF statements and tags
        • Syntax validation
        • Variables: Operators and functions
        • Advanced syntax documentation for validation files
      • 2.6.2. Keywords
        • classical{}
        • contacts{}
        • currents{}
        • database{}
        • global{}
        • grid{}
        • import{}
        • impurities{}
        • optics{}
        • output{}
        • poisson{}
        • quantum{}
        • run{}
        • strain{}
        • structure{}
      • 2.6.3. Simulation output
      • 2.6.4. Material Database
        • Interpolation Schemes
        • Available Materials and Alloys
        • Definition of Band Offsets (zincblende)
      • 2.6.5. Command line arguments
      • 2.6.6. Settings for maximizing performance
  • 3. nextnano³
    • 3.1. Overview
    • 3.2. Tutorials
      • 3.2.1. Heterostructures
        • Quantum Confined Stark Effect (QCSE)
        • Optical interband absorption in a quantum well including excitonic effects
        • Mobility in two-dimensional electron gases (2DEGs)
      • 3.2.2. Band structure
        • Empirical tight-binding sp3s* band structure of GaAs, GaP, AlAs, InAs, C (diamond) and Si
        • Tight-binding band structure of graphene
        • 30-band \(\mathbf{k}\cdot\mathbf{p}\) band structure calculation
      • 3.2.3. Transmission
        • Efficient method for the calculation of ballistic quantum transport - The CBR method (2D example)
        • Transmission through a 3D nanowire (3D example)
        • 1D - Quantum Tunneling: Comparison of CBR- and WKB approaches with the exact answer
        • Landauer conductance and conductance quantization: from quantum wires to quantum point contacts
        • 1D - Quantum Tunneling and Fowler–Nordheim theory
      • 3.2.4. Electrolyte
        • Poisson–Boltzmann equation: The Gouy–Chapman solution
      • 3.2.5. Quantum Mechanics
      • 3.2.6. Semiconductor Physics
      • 3.2.7. Strain and Piezoelectricity
      • 3.2.8. Magnetic field
      • 3.2.9. Heterostructures
      • 3.2.10. k.p
      • 3.2.11. T2SL
      • 3.2.12. 2DEGs
      • 3.2.13. Optoelectronics
      • 3.2.14. Electronics
      • 3.2.15. NEGF
      • 3.2.16. Electrolyte
      • 3.2.17. Graphene
      • 3.2.18. Hello World
    • 3.3. Reference
      • 3.3.1. Input File
        • Macro features
        • The input file keywords
        • Keywords
      • 3.3.2. Database
        • The database keywords
        • Keywords
      • 3.3.3. Command line arguments
  • 4. nextnano.NEGF
    • 4.1. Overview
    • 4.2. Tutorials
      • 4.2.1. THz QCLs
        • GaAs/AlGaAs
        • InGaAs/AlGaSb
      • 4.2.2. Mid-IR QCLs
        • InGaAs/AlInAs
        • GaAs/AlGaAs
      • 4.2.3. AlGaAs/GaAs RTD
        • Simulation input
        • Simulation output
  • 5. nextnano.MSB
    • 5.1. Overview
    • 5.2. Command line arguments
    • 5.3. Input file syntax
      • 5.3.1. Input file
      • 5.3.2. General syntax
    • 5.4. Material database
      • 5.4.1. Elements and binary compounds
        • ConductionBandOffset
        • ValenceBandOffset
        • BandGap
        • BandGapAlpha
        • BandGapBeta
        • ElectronMass
        • EpsStatic
        • EpsOptic
        • LOPhononEnergy
        • LOPhononWidth
        • DeformationPotential
        • MaterialDensity
        • VelocityOfSound
        • AcousticPhononEnergy
        • Lattice_a
        • Elastic_c11
        • Elastic_c12
        • Elastic_c44
        • Piezo_e14
      • 5.4.2. Ternary compounds
      • 5.4.3. Quaternary compounds
    • 5.5. Simulation output
      • 5.5.1. Input
        • Material parameters
        • Input parameters
      • 5.5.2. Output
        • Energy profile
        • Eigenstates
        • CarrierDensity
        • DOS
        • Probes
        • Gain
        • Gain-voltage characteristics
        • Transmission
        • Current density
        • Current-voltage characteristics (I-V curve)
    • 5.6. Log file
    • 5.7. Tutorials
      • 5.7.1. Transmission coefficient of a double barrier structure
      • 5.7.2. Ballistic current calculation of a GaAs nin resistor
        • Example 1
        • Example 2
      • 5.7.3. Resonant tunneling diode (RTD)
      • 5.7.4. Quantum Well
      • 5.7.5. AlGaAs/GaAs THz QCL
  • 6. nextnanopy
    • 6.1. Overview
      • 6.1.1. What is nextnanopy?
      • 6.1.2. How do I install it?
      • 6.1.3. Where to start?
    • 6.2. Tutorials
      • 6.2.1. Basic Tutorials
      • 6.2.2. Data Visualization

Cloud Computing

  • HTCondor
    • HTCondor on nextnanomat
    • Recommended Installation Process
      • Summary of settings (Example)
      • Config file
      • Configuring a pool without a domain
    • Submitting jobs to HTCondor pool with nextnanomat
    • Useful HTCondor commands for the Command Prompt
    • HTCondor Pool - Managing Slots
      • Dynamic slots
    • Machine states
    • Machine activities
    • Configuration options for the Central Manager computer
    • FAQ
    • Problems with HTCondor
      • Error: communication error
      • Error: condor_store_cred add failed with Operation failed. Make sure your ALLOW_WRITE setting include this host.
      • Error? Check the Log files
    • Known bugs
    • Run your custom executable on HTCondor with nextnanomat
      • Input file identifier
      • Settings for Hello World (HW)
      • Settings for Quantum ESPRESSO (QE)
      • Settings for ABINIT
        • Notes

Support

  • Frequently Asked Questions (FAQ)
    • FAQ - General
      • Copyright Statement
      • Are there any video tutorials available?
      • Hardware requirements for nextnano? I want to buy a new computer. What shall I buy?
      • How shall I cite the nextnano software in publications?
    • FAQ - Simulation
      • nextnano Product related
        • Which features have been implemented recently?
        • What is the difference between nextnano³ and nextnano++?
        • Can I convert nextnano³ input files into nextnano++ input files?
        • How can I track how much memory is used during the simulations?
        • Can I pass additional command line arguments to the executable?
        • How can I speed up my calculations with respect to CPU time?
        • Can I take advantage of parallelization of the nextnano software on multi-core CPUs?
        • Dirichlet vs. Neumann boundary conditions
        • Quasi-Fermi level
        • I don’t understand the \(\mathbf{k} \cdot \mathbf{p}\) parameters
        • Can I add new materials to the database?
      • GUI nextnanomat related
        • How do I produce 1D slices through the 2D plots in the GUI?
        • Is there a way to produce a 1D (or 2D) plot of some result, for example the probability density with the conduction band edge superimposed?
        • In other words, can the GUI show multiple plots at once?
        • What is the difference between “List view” and “Tree view”?
    • FAQ - Licensing
      • Which types of licenses exist?
      • How many people can use the software simultaneously?
      • Which license do I need for Cluster computing?
      • Is there a possibility to evaluate the nextnano software before purchasing?
      • I remember there have been .txt licenses before, what happened to them?
      • License activation
        • I don’t have a license (key)
        • I already purchased a license
        • Can I activate my license without using nextnanomat?
        • I encounter an error during license activation
      • Licensing.dll cannot be found
    • FAQ - Error messages and handling
      • Where to find simulation LOG file
      • How to add additional debug information to the LOG file
      • ERROR when loading input file “File format is not valid”
      • Error while starting simulation (“The specified executable is not a valid application for this OS platform.”)
      • No Dirichlet points for Fermi levels found
      • Quantum-Current-Poisson fails to converge
      • Which files should I attach to a support request?
  • Error handling
    • nextnano simulation does not start
      • Possible error sources
      • Files to be included in support request
    • nextnano simulation does not finish (errors in log file)
    • Application nextnanomat cannot be started
    • nextnanomat prompts error or exception message
    • Further References
  • Support Ticket System
    • Motivation
    • How to get the fastest support possible?
    • Channels
      • Help Center (recommended)
      • Widget
      • Email

References

  • Books
  • Theses
  • Journal Papers
nextnano Manual
  • »
  • Installation
Previous Next

Installation¶

  • First Steps
  • Operating system
    • Windows
    • Linux
    • MacOS
  • Downloads
    • nextnano software
    • nextnano++ & nextnano³
    • nextnano.NEGF
    • nextnanomat
    • nextnano.MSB
  • Release Notes
    • Release notes of nextnanomat
    • Release notes of nextnano++
    • Release notes of nextnano3
    • Release notes of nextnano.NEGF
Previous Next

© Copyright 2023, nextnano GmbH.

Built with Sphinx using a theme provided by Read the Docs.