binary-wz-default
Wurtzite material parameters
For materials which are not known to the database and for the use of non 
default values for some of the parameters of a known material. 
For totally unknown materials, all parameters must be specified in the input 
file. This will be required in very rare cases, however. 
In most cases it is possible to use an unknown material name which can be 
associated to a known material type and to change only a few parameters by this 
keyword and its specifiers. 
More information can be found under the keyword
binary-wz-default under the section Database. 
!--------------------------------------------------------------! 
$binary-wz-default                                  
optional  ! 
 binary-type                         
character      
required  ! 
 binary-name                         
character      
optional  ! 
 apply-to-material-numbers           
integer_array   required  ! 
                                                               ! 
 conduction-bands                    
integer        
optional  ! total number of conduction bands 
 conduction-band-masses              
double_array   
optional  ! [m0] for each band. Ordering of numbers corresponds to band 
no. 1, 
2, ... 
 conduction-band-degeneracies        
integer_array   optional  ! 
including spin degeneracy 
 conduction-band-nonparabolicities   double_array   
optional  ! As used in a hyperbolic 
dispersion k^2 ~ E(1+aE). a = nonparabolicity (1/eV) 
 band-gaps                           
double_array   
optional  ! 
 conduction-band-energies            
double_array   
optional  ! 
conduction band edge energies relative to valence bands 
                                                               !  
 valence-bands                       
integer        
optional  ! total number of 
valence bands 
 valence-band-masses                 
double_array   
optional  ! [m0] mxx, myy, 
mzz for each band (heavy, light and crystal-field split-off 
hole). Ordering of numbers corresponds to band no. 1, 
2, ... 
 valence-band-degeneracies           
integer_array   optional  ! 
including spin degeneracy 
 valence-band-nonparabolicities      
double_array   
optional  !  As used in a hyperbolic 
dispersion k^2 ~ E(1+aE). a = nonparabolicity (1/eV)  
 valence-band-energies               
double         
optional  ! "average" valence band edge energy Ev 
(see comments below) 
                                                               ! 
 varshni-parameters                  
double_array   
optional  ! alpha [eV/K] 
(Gamma,indirect,indirect), beta [K] 
(Gamma,L,indirect,indirect) 
 band-shift                          
double         
optional  ! to adjust band alignments 
(should be zero in database) 
                                                               ! 
 absolute-deformation-potential-vb   double         
optional  ! not used in wurtzite 
 absolute-deformation-potentials-cbs double_array   
optional  
! absolute deformation potential of conduction band: ac,a(=a2) ac,a(=a2) 
ac,c(=a1) [eV] 
                                                               ! 
 uniax-vb-deformation-potentials     
double_array   
optional  ! b,d related [eV] 
 uniax-cb-deformation-potentials     
double_array   
optional  ! not used in wurtzite 
                                                               
! 
 lattice-constants                   
double_array   
optional  ! [nm] 
 lattice-constants-temp-coeff        
double_array   
optional  ! [nm/K] 
                                                               
! 
 elastic-constants                   
double_array   
optional  ! 
 piezo-electric-constants            
double_array   
optional  ! 
 pyro-polarization                   
double_array   
optional  ! 
                                                               
! 
 static-dielectric-constants         
double_array   
optional  ! 
 optical-dielectric-constants        
double_array   
optional  
! 
                                                               
! 
 6x6kp-parameters                    
double_array   
optional  ! 
 8x8kp-parameters                    
double_array   
optional  ! 
                                                               
! 
 LO-phonon-energy          
       
 double_array   
 required  ! [eV] 
                                                               
! 
 number-of-minima-of-cband           
integer_array   optional  !
required for 'conduction-band-minima' 
 conduction-band-minima              
double_array   
optional  !          
and 'principal-axes-cb-masses' 
 principal-axes-cb-masses            
double_array   
optional  ! 
                                                               
! 
 number-of-minima-of-vband           
integer_array   optional  !
required for 'valence-band-minima' 
 valence-band-minima                 
double_array   
optional  !          
and 'principal-axes-vb-masses' 
 principal-axes-vb-masses            
double_array   
optional  ! 
                                                               
! 
$end_binary-wz-default                              
optional  ! 
!--------------------------------------------------------------! 
  
Syntax
binary-type = character 
            = 
GaN-wz-default 
If the string is a known material-type, the default parameters for this 
material type will be read from the database first. By specifying some of the 
parameters by the present keyword and specifiers, the defaults will be 
overwritten. 
If the string is not known to the database, you will be prompted for 
all of the material parameters. In this case you have to specify the relevant 
specifiers in 
$material (material-model, 
material-type). If here a known material-type is specified, 
however, then not all material parameters are needed as the defaults are taken 
unless otherwise specified. See here for an example: 
$material 
  
binary-name = string 
To specify a name for the present new defined material. 
apply-to-material-numbers = integer1
integer2 integer3
... 
Apply new or partially changed material data to material numbers specified. 
	- Note: If you want to overwrite the parameters of a ternary, you 
	also have to include the associated material numbers of the ternary 
	here, i.e. in
$binary-wz-default. 
	Consider this example: 
	 
	Assume that you have used the following materials in your input file: 
	 
	  $material 
	   material-number = 1 
   material-name   = GaN 
   ... 
	 
   material-number = 2 
   material-name   = In(x)Ga(1-x)N  
	! material number of ternary = 2 
   ...                               
	! Note that the material parameters of the ternary InGaN are 
	interpolated from its binary constituents InN and GaN. 
	 
   material-number = 3 
   material-name   = InN 
   ... 
	 
	Then you have to overwrite the material parameters as follows. 
	 
  $binary-wz-default 
   binary-type = GaN-zb-default 
 ! apply-to-material-numbers = 1   !
	Obviously, this overwrites the material parameters of material #1 
	which is GaN but not the GaN values of which the ternary 
	In(x)Ga(1-x)N (material #2) is calculated. 
	                                   
	! Therefore, for material #2, the default GaN values of the database 
	are used and not the ones specified in the input file. 
   apply-to-material-numbers = 1 2 
	! This overwrites the material parameters of material #1
	which is GaN and the GaN values of which the 
	ternary In(x)Ga(1-x)N (material #2) 
	is calculated. 
   ... 
	 
  $binary-wz-default 
   binary-type = InN-zb-default 
 ! apply-to-material-numbers = 3   !
	Obviously, this overwrites the material parameters of material #3 
	which is InN but not the InN values of which the ternary 
	In(x)Ga(1-x)N (material #2) is calculated. 
                                   
	! Therefore, for material #2, the default InN values of the database 
	are used and not the ones specified in the input file. 
   apply-to-material-numbers = 2 3 
	! This overwrites the material parameters of material #3
	which is InN and the InN values of which the 
	ternary In(x)Ga(1-x)N (material #2) 
	is calculated. 
   ... 
	 
  $binary-wz-default 
   ternary-type = In(x)Ga(1-x)N-wz-default 
   apply-to-material-numbers = 2   
	! This overwrites the material parameters (here: bowing parameters) 
	of the ternary material #2 which 
	is InGaN. 
   ... 
  
 
  
conduction-bands = int 
Number of nondegenerate conduction bands (minima). Most likely, only 3 is a 
working number. 
conduction-band-masses = m_perp  m_perp  
m_par ! 
[m0] masses at the Gamma point m_|_, m_|_, m|| 
(with respect to c-axis) 
                         
m4      m5      m6    
! [m0] masses at the indirect ??? point 
                         
m7      m8      m9    ! [m0] masses at the 
indirect ??? point 
mij are the masses in the principal axes system of the 
minima. These masses are associated to the eigenvectors of the minima in the 
order they are given in the parameter set. 
conduction-band-degeneracies = deg1 deg2 deg3 
As many degeneracy factors as mass triplets above. 
number-of-minima-of-cband = deg1 deg2 deg3 
number of minima (without spin degeneracy) in each set of degenerate minima. 
conduction-band-minima   = v11 v12 v13 
                           
v21 v22 v23 
                           
v31 v32 v33 
                          
.... 
k-vectors to individual conduction band minima. 
As many vectors (coordinate triplets in crystal coordinate system) as individual 
minima. 
Let's assume we have 3 conduction band minima 1,2,3 as specified above. 
These minima are deg1,deg2,deg3-fold degenerate. In this case, 
input for deg1/2+deg2/2+deg3/2 vectors has to be provided. The 
factor 1/2 is due to spin degeneracy which is already included in the degeneracy 
factors. 
Note: Currently it is assumed in parts of the program, that the ordering 
of the conduction minima is like 1=Gamma       
???? 2=L   3=X ???? 
Note:
number-of-minima-of-cband is required (!) for this specifier. 
principal-axes-cb-masses = a11 a12 a13 
                           
b11 b12 b13 
                           
c11 c12 c13 
                            
.... 
                            
.... 
                            
.... 
                           
a21 a22 a23 
                           
b21 b22 b23 
                           
c21 c22 c23 
                            
.... 
                            
.... 
                            
.... 
                           
a31 a32 a33 
                           
b31 b32 b33 
                           
c31 c32 c33 
                            
.... 
                            
.... 
                            
.... 
Completely analog as conduction-band-minima, but this time 3 vectors 
for each individual minimum. The ordering of the principal axis is associated to 
the ordering of the conduction-band-masses. 
Note:
number-of-minima-of-cband is required (!) for this specifier. 
  
conduction-band-nonparabolicities = a_Gamma a_? 
a_? 
Nonparabolicity factors for the Gamma, L and X conduction bands as used in a hyperbolic dispersion k2 ~ E (1 +
aE) = E + aE2. 
a = nonparabolicity [1/eV] (usually 
denoted with alpha) 
The energy of the 
Gamma valley is assumed to be nonparabolic, spherical (CHECK: is this also true 
for wurtzite?), and of the form 
hbar2 k2 / (2 m*) = Eparabolic = Enonparabolic (1 + aEnonparabolic) 
where a is given by a = (1 - m*/m0)2 / Eg. 
Eparabolic is the energy of the carriers in the usual 
parabolic band. 
Enonparabolic is the energy of the carriers in the 
nonparabolic band. 
The nonparabolic band factor a can be calculated from the Kane model. 
Note that this nonparabolicity correction only influences the classically 
calculated electron densities. 
Quantum mechanically calculated densities are unaffected. 
  
band-gaps = e1  e2  e3  ! [eV]  
Note that this flag is optional. It is only used if the flag use-band-gaps 
= yes is used. 
Energy band gaps of the three valleys. 
conduction-band-energies = e1 e2 e3 
Absolute conduction band edge energies. One number for each set of degenerate 
minima. 
varshni-parameters = 0.909d-3 0.0d0 0.0d0  ! 
alpha [eV/K](Gamma, indirect, indirect) Vurgaftman 
                    
830d0    0.0d0 0.0d0  ! beta  
[K]   (Gamma, indirect, indirect) Vurgaftman 
Temperature dependent band gaps (here: GaN values).
More information... 
band-shift = double 
Can be used to rigidly shift all band energies by this amount. 
  
absolute-deformation-potential-vb  = 0.0d0 
! a_v [eV] - not used in wurtzite 
Absolute deformation potential of valence bands. 
  
absolute-deformation-potentials-cbs = ac,a (a axis)   ac,a (a axis)  
ac,c (c axis) ! [eV] 
                                    
= -10.0d0      -10.0d0     -5.0d0     ! [eV] 
absolute deformation potentials of Gamma conduction band minima
ac,a=a2 (a axis), 
ac,a=a2 (a axis), ac,c=a1 (c 
axis) 
 
Note that I. Vurgaftman et al., JAP 94, 3675 (2003) lists
a1 and a2 
parameters. 
They refer to the interband deformation potentials, i.e. to the 
deformation of the band gaps. 
Thus we have to add the deformation potentials of the valence bands to get 
the deformation potentials for the conduction band edge. 
ac,a = a2 
= a2 + D2 
ac,c = a1 
= a1 + D1 
  
uniax-vb-deformation-potentials = -3.7d0  
4.5d0  8.2d0 ! D1, D2, D3 [eV] 
                                 
-4.1d0 -4.0d0 -5.5d0 ! D4, D5, D6 [eV] 
Uniaxial deformation potentials of valence bands. 
  
uniax-cb-deformation-potentials  = 0d0     
0d0     0d0  ! not used in wurtzite 
Uniaxial deformation potentials of conduction bands. 
Xi_u (at minimum) 
  
lattice-constants            = 
0.3189d0  0.3189d0  0.5185d0  
! [nm]   300 K 
                             
= a        a        
c 
3 positive numbers 
lattice-constants-temp-coeff = 3.88d-6  
3.88d-6  3.88d-6     ! [nm/K] 
More information on temperature dependent lattice constants... 
  
elastic-constants  = C11   C12   C13  C33  C44 
Elastic constants C11,C12,C13,C33,C44 in [GPa] with their usual 
meaning. 
(C66 is not needed as it can be calculated. C66 = 0.5 * (C11 
- C12).) 
  
piezo-electric-constants  = e33  e31  e15                           ! [C/m^2] 
e33  e31   e15                           
(1st   order coefficients) 
                           
B311 B312 B313 B333 B115 B125 B135 B344 ! [C/m^2] B311  
B312  B313  B333  B115  
B125 B135  B344
(2nd order coefficients) 
Example: For pseudomorphic AlxGa1-xN layers 
grown on GaN, the strain is tensile. The induced piezoelectric polarization is 
positive for compressive and negative for tensile strain leading to a gradient 
in the polarization at the interface. (This can lead to the formation of a 
2-dimensional electron gas.) 
Conventionally, the sign of the piezoelectric tensor components is fixed by 
assuming that the positive direction along the  
- [111] direction (zincblende) 
- [0001] direction (wurtzite) 
goes from the cation to the anion. 
For option
piezo-second-order 
= 2nd-order-Tse-Pal 
and
4th-order-Tse-Pal
different parameters can be specified, see
$numeric-control. 
pyro-polarization  = 0d0  0d0  Psp  ! [C/m^2] 
Components of spontaneous polarization in crystal fixed cartesian coordinate 
system. 
The spontaneous polarization Psp is due to the deviation of the 
lattice constants a and c from their "ideal" value. 
   ideal: c/a=(8/3)1/2=1.633 
   real:  c/a=1.626 (GaN) 
           c/a=1.601 (AlN) 
           c/a=1.613 (InN) 
Thus the vector sum of the dipole moments does not vanish leading to a 
spontaneous polarization along the c axis of the crystal (pointing from N to 
Ga(Al,In) atom). 
  
static-dielectric-constants = eps1  eps2
 eps3 
Static dielectric constants. The numbers 
correspond to the crystal directions (similar to lattice-constants): 
- in zinc blende: eps1 = eps2 
= eps3 
- in wurtzite:    eps1 =
eps2   eps3 
             eps3 
is parallel to the c direction in wurtzite. 
             
eps1 and eps2  are perpendicular to the c direction in wurtzite. 
low frequency dielectric constant 
epsilon(0) 
optical-dielectric-constants = epsu_perpendicular  
epsu_perpendicular  epsu_parallel 
high frequency dielectric constant
epsilon(infinity); perpendicular and parallel to c axis 
  
6x6kp-parameters   = A1     A2     A3     
! 6-band k.p Rashba-Sheka-Pikus 
parameters 
                     
A4     A5     A6     
! 6-band k.p Rashba-Sheka-Pikus 
parameters 
                     
Delta1 Delta2 Delta3 ! [eV] 
8x8kp-parameters   = A1'    A2'    A3'   
! 8-band k.p Rashba-Sheka-Pikus 
parameters 
                     
A4'    A5'    A6'    ! 
8-band k.p Rashba-Sheka-Pikus parameters 
                     
B1     B2     B3    
! [hbar2/(2m0)] 
                     
E_P1   E_P2          ! 
[eV] 
                     
S1     S2            ! 
[] 
 A1,A2,A3,A4,A5,A6: 
6-band (or 8-band) Rashba-Sheka-Pikus k.p parameters for wurtzite 
Delta1: crystal field split-off energy [eV] 
Delta2 = Delta3 = 1/3 Delta_so [eV] 
Delta_so: spin-orbit split-off energy [eV)] 
B1,B2,B3:
8-band k.p inversion symmetry parameters in units of [hbar2/(2m0)] 
E_P1,E_P2: Kane's momentum matrix elements EP1, 
EP2 in units of [eV] 
S1,S2: 8-band 
k.p parameters for the conduction band mass (dimensionless) 
Note: The S
parameter is also defined in the literature as F
where S = 1 + 2F, e.g. I. Vurgaftman et al., JAP 89, 
5815 (2001). 
F = (S - 1)/2 
   
LO-phonon-energy = ELO,ph,perp  ELO,ph,perp 
ELO,ph,parallel     ! [eV] low-temperature optical phonon energy 
(perpendicular and parallel to c axis) 
 m_perp=1.6 , m_perp=1.6 , m_par=1.1  - http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaN/bandstr.html 
valence-bands                  = integer 
valence-band-masses            = 0.370d0 0.370d0 2.090d0 ! 
[m0] heavy hole (HH) masses m_|_, m_|_, m|| 
(with respect to c-axis) 
               
                
0.390d0 0.390d0 0.740d0 ! [m0] 
light   hole (LH)  masses m_|_, m_|_, m|| 
(with respect to c-axis) 
                                
0.940d0 0.940d0 0.180d0 ! 
[m0] crystal-field split-hole (CH) masses m_|_, m_|_, 
m|| (with respect to c-axis) 
valence-band-degeneracies      = integer_array 
valence-band-nonparabolicities = 
double_array   
! see comments for conduction-band-nonparabolicities 
  
valence-band-energies          = 
double 
The "average" valence band edge energy is according to Ev 
in: 
   S.L. Chuang, C.S. Chang 
   k.p method for strained wurtzite semiconductors 
   Phys. Rev. B 54 (4), 2491 (1996) 
The valence band energies for heavy hole (HH), light hole (LH) and 
crystal-field split-hole (CH) are calculated by 
  defining an "average" valence band energy Ev for all three bands and adding the 
  spin-orbit-splitting and crystal-field splitting energies afterwards. 
The crystal-field splitting energy Deltacr and the 
spin-orbit-splitting energies Delta2 = Delta3 = 1/3 Deltaso 
are defined together with the 6-band k.p parameters. 
The "average" valence band energy Ev is defined on an absolute 
energy scale and must take into account the valence band offsets which are "averaged" over the three holes. 
Note: The real average of the three holes is: Ev,av = 
(EHH + ELH + ECH ) / 3 = Ev + 2/3 Deltacr 
  
number-of-minima-of-vband           
= integer_array 
valence-band-minima                 
= double_array  ! 
Note:
number-of-minima-of-vband is required (!) for this specifier. 
principal-axes-vb-masses            
= double_array  ! 
Note:
number-of-minima-of-vband is required (!) for this specifier. 
Valence band parameters in complete analogy to conduction band parameters. 
More information can be found under the keyword
binary-wz-default under the section Database. 
  
 |