ternary-wz-default
Ternary wurtzite parameters
Parameters for wurtzite type ternary alloys. This parameter set refers to the 
binary constituents and their material parameters and specifies the bowing 
parameters for interpolation between the binaries. 
Bowing parameters b are defined for 
 
Q[AxB1-xC] = x * Q[AC] + (1-x) * Q[BC] - b
* x * (1-x). 
b is defined as  b = 4Q(A0.5B0.5C) - 
2[ Q[AC] + Q[BC] ]. 
The advantage of the bowing model is that it requires knowledge of the 
relevant quantity only at a composition x=0.5 together with the values for the 
binaries. 
  
!-----------------------------------------------------------------! 
$ternary-wz-default                                      
optional ! 
 ternary-type                            
character      
required ! Al(x)Ga(1-x)N-wz-default, must be 
a declared binary material 
 ternary-name                            
character      
optional ! 
 apply-to-material-numbers               
integer_array   required ! 
 binary(x)                               
character      
optional ! AlN-wz-default, must be a defined binary material 
 binary(1-x)                             
character      
optional ! GaN-wz-default, must be a defined binary material 
                                                                  ! 
 bow-conduction-band-masses              
double_array   
optional ! Bowing parameters b are 
defined for Q[A(x)B(1-x)C] = x*Q[AC]+(1-x)*Q[BC]-b*x*(1-x) 
 bow-conduction-band-nonparabolicities   
double_array   
optional ! [m0] 
 bow-band-gaps                           
double_array   
optional ! 
 bow-conduction-band-energies            
double_array   
optional ! 
                                                                  ! 
 bow-valence-band-masses                 
double_array   
optional ! [m0] 
 bow-valence-band-nonparabolicities      
double_array   
optional ! 
 bow-valence-band-energies               
double         
optional ! "average" valence band edge energy 
Ev (see comments below) 
                                                                  ! 
 band-shift                              
double         
optional ! to adjust band alignments (should 
be zero in database) 
 bow-band-shift                          
double         
optional ! to adjust band alignments, using 
band shifts specified for binaries 
                                                                  ! 
 bow-abs-deformation-pot-vb              
double         
optional ! not used in wurtzite 
 bow-abs-deformation-pots-cbs            
double_array   
optional ! 
 
 bow-uniax-vb-deformation-pots           
double_array   
optional ! 
 bow-uniax-cb-deformation-pots           
double_array   
optional ! not used in wurtzite 
                                                                  ! 
 bow-lattice-constants                   
double_array   
optional ! 
 bow-elastic-constants                   
double_array   
optional ! 
 bow-piezo-electric-constants            
double_array   
optional ! 
 bow-pyro-polarization                   
double_array   
optional ! 
                                                                  ! 
 bow-static-dielectric-constants         
double_array   
optional ! 
 bow-optical-dielectric-constants        
double_array   
optional ! 
                                                                  ! 
 bow-6x6kp-parameters                    
double_array   
optional ! 
 bow-8x8kp-parameters                    
double_array   
optional ! 
                                                                  ! 
 bow-LO-phonon-energy          
       
 double_array   
 required ! 
                                                                  ! 
$end_ternary-wz-default                                  
optional ! 
!-----------------------------------------------------------------! 
  
Syntax
ternary-type = 
Al(x)Ga(1-x)N-wz-default 
             = 
Al(x)In(1-x)N-wz-default 
 
             = 
In(x)Ga(1-x)N-wz-default 
e.g. Al(x)Ga(1-x)N-wz-default, 
must be a defined ternary material 
If the string is a known material-type, the default parameters for this 
material type will be read from the database first. By specifying some of the 
parameters by the present keyword and specifiers, the defaults will be 
overwritten. 
If the string is not known to the database, you will be prompted for 
all of the material parameters. In this case you have to specify the relevant 
specifiers in 
$material (material-model, 
material-type). If here a known material-type is specified, 
however, then not all material parameters are needed as the defaults are taken 
unless otherwise specified. See here for an example: 
$material 
The binary 
constituents can still be either known or unknown binary materials. 
ternary-name = string 
String is a name of your choice. Currently this string is not used in the 
code. 
apply-to-material-numbers = num1 num2 ... 
Intended to change only some parameters for some materials which are otherwise 
identical. 
binary(x)    = AlN-wz-default 
String can be either a known binary or an arbitrary name. In case this binary is 
not a known material, you will be prompted for all material parameters. In its 
current implementation, there are only a few checks with respect to the number 
of data expected for each parameter. Most likely, the program will simply crash 
if something is specified which differs from the data structure of a known 
material. 
must be a binary material of type binary-wz-default 
e.g. AlN-wz-default, must be a defined binary 
material 
  
binary(1-x)  = GaN-wz-default 
The name of the second binary for the alloy. Limitations and problems as for the 
other binary. 
must be a binary material of type binary-wz-default 
e.g. 
GaN-wz-default, 
must be a defined binary material 
  
bow-conduction-band-masses = 0d0   0d0   0d0 ! [m0]
masses at the Gamma point m_|_, m_|_, m|| 
(with respect to c-axis) 
                             
0d0   0d0   0d0 ! [m0]
masses at the indirect ??? point 
                             
0d0   0d0   0d0 ! [m0]
masses at the indirect ??? point 
Bowing parameters for the effective masses in the conduction band minima. The 
ordering corresponds to the ordering of the masses in the binary constituents. 
For each set of degenerate minima a triplet of bowing parameters for the three 
masses associated to the minimum. 
Bowing parameters b are defined for Q[A(x)B(1-x)C] = 
x*Q[AC]+(1-x)*Q[BC]-b*x*(1-x) 
  
bow-conduction-band-nonparabolicities = 0.0d0 
0.0d0 0.0d0 
Bowing parameters for the nonparabolicity parameters of the conduction band 
minima. One nonparabolicity parameter for each band. 
bow-band-gaps = 0d0 0d0 0d0  ! [eV]  
Note that this flag is optional. It is only used if the flag use-band-gaps 
= yes is used. 
Bowing parameter of the energy band gaps of the three valleys (Gamma, ?, ?). 
bow-conduction-band-energies = 0d0 0d0     
0d0 
Bowing parameters for conduction band energies. One bowing parameter for each 
set of degenerate minima. 
  
bow-valence-band-masses    = 0d0   0d0   0d0 ! 
[m0] heavy hole (HH) masses m_|_, m_|_, m|| 
(with respect to c-axis) 
               
            
0d0   0d0   0d0 ! [m0] 
light   hole (LH)  masses m_|_, m_|_, m|| 
(with respect to c-axis) 
                            
0d0   0d0   0d0 ! 
[m0] crystal-field split-hole (CH) masses m_|_, m_|_, 
m|| (with respect to c-axis) 
bow-valence-band-nonparabolicities = 0d0     
0d0     0d0 
see comments for bow-conduction-band-nonparabolicities 
  
bow-valence-band-energies = 0.0     
The "average" valence band edge energy is according to Ev 
in: 
   S.L. Chuang, C.S. Chang 
   k.p method for strained wurtzite semiconductors 
   Phys. Rev. B 54 (4), 2491 (1996) 
The valence band energies for heavy hole (HH), light hole (LH) and 
crystal-field split-hole (CH) are calculated by 
  defining an "average" valence band energy Ev for all three bands and adding the 
  spin-orbit-splitting and crystal-field splitting energies afterwards. 
The crystal-field splitting energy Deltacr and the 
spin-orbit-splitting energies Delta2 = Delta3 = 1/3 Deltaso 
are defined together with the 6-band k.p parameters. 
The "average" valence band energy Ev is defined on an absolute 
energy scale and must take into account the valence band offsets which are "averaged" over the three holes. 
Note: The real average of the three holes is: Ev,av = 
(EHH + ELH + ECH ) / 3 = Ev + 2/3 Deltacr 
  
bow-band-shift = 0d0     
to adjust band alignments, using band shifts specified for binaries 
Bowing parameter to interpolate rigid band shift of binaries. 
  
band-shift = 0d0     
to adjust band alignments (should be zero in database) 
Can be used to rigidly shift the band energies. 
  
bow-abs-deformation-pot-vb    = 0.0d0 
! a_v [eV] - not used in wurtzite 
Bowing parameters for absolute deformation potential of valence bands. 
bow-abs-deformation-pots-cbs = a2  a2  
a1 
bow-abs-deformation-pots-cbs  = 0d0     
0d0     0d0      !  (a2  
a2  a1) 
Bowing parameters for absolute deformation potentials of Gamma conduction band 
minima a_c (a axis),
a_c (a axis), 
a_c (c axis) 
bow-uniax-vb-deformation-pots = 0d0     
0d0     0d0     
                               
0d0     0d0     
0d0     
  
Bowing parameters for uniaxial deformation potentials of valence bands. 
b,d related [eV] 
bow-uniax-cb-deformation-pots = 0d0     
0d0     0d0    ! 
not used in wurtzite 
  
bow-lattice-constants = 0d0     0d0     
0d0    !
[nm] 
Bowing parameters for lattice constants. 
bow-elastic-constants = 0d0     
0d0     0d0    0d0     0d0 
Bowing parameters for elastic constants C11,C12,C13,C33,C44. 
  
bow-piezo-electric-constants = 0d0 
0d0 0d0   0d0 0d0 0d0 0d0 0d0 0d0 0d0 0d0  !
[C/m^2] 
Bowing parameters for piezoelectric constants e33  e31  e15  
B311  B312  B313  B333  
B115  B125 B135  B344 
For option
piezo-second-order 
= 2nd-order-Tse-Pal 
and
4th-order-Tse-Pal
different parameters can be specified, see
$numeric-control. 
bow-pyro-polarization = 0  0  bow-Psp  ! [C/m2] 
bow-pyro-polarization        = 
0d0     0d0     0d0  ! 
[C/m^2] 0d0  0d0  Psp 
Bowing parameters for components of spontaneous pyroelectric polarization. 
3 numbers 
  
bow-static-dielectric-constants  = 0d0     
0d0     0d0 
Bowing parameters for static dielectric constants. 
bow-optical-dielectric-constants = double_perpendicular  
double_perpendicular  double_parallel 
bow-optical-dielectric-constants = 0d0     
0d0     0d0 
Bowing for high frequency dielectric constant. 
  
bow-6x6kp-parameters  = 0d0     0d0     
0d0    ! 
6-band k.p Rashba-Sheka-Pikus parameters 
                       
0d0     0d0     0d0    
! 
6-band k.p Rashba-Sheka-Pikus parameters 
                        0d0     0d0     0d0    
! Delta1   Delta2   Delta3       
[eV] 
 
bow-8x8kp-parameters  = 0d0     0d0     
0d0    ! 
8-band k.p Rashba-Sheka-Pikus parameters 
                       
0d0     0d0     0d0    
! 
8-band k.p Rashba-Sheka-Pikus parameters 
                        
0d0     0d0     0d0    
! B1   B2  B3  [hbar2/(2m0)] 
                        0d0     0d0            
! EP1  EP2      [eV] 
                        
0d0     0d0            
! S1   S2      [] 
 
bow-6x6kp-parameters = A1     A2     A3     
! 
6-band k.p Rashba-Sheka-Pikus 
parameters 
                       
A4     A5     A6     
! 6-band k.p Rashba-Sheka-Pikus 
parameters 
                       
Delta1 Delta2 Delta3 ! [eV] 
Bowing parameters for 6-band k.p model. 
bow-8x8kp-parameters = A1'    A2'    A3'   
! 8-band k.p Rashba-Sheka-Pikus 
parameters 
                       A4'    A5'    A6'    ! 
8-band k.p Rashba-Sheka-Pikus parameters 
                       B1     B2     B3    
! [hbar2/(2m0)] 
 old version:           P1     
P2            ! 
[eVAngstrom] 
                        E_P1   E_P2          ! 
[eV] 
                       S1     S2            ! 
[] 
Bowing parameters for 8-band k.p model. 
 A1,A2,A3,A4,A5,A6: 
6-band (or 8-band) Rashba-Sheka-Pikus k.p parameters for wurtzite 
Delta1: crystal field split-off energy [eV] 
Delta2 = Delta3 = 1/3 Delta_so [eV] 
Delta_so: spin-orbit split-off energy [eV)] 
B1,B2,B3:
8-band k.p inversion symmetry parameters in units of [hbar2/(2m0)] 
old version: P1,P2:  momentum 
matrix element parameters derived from Kane's momentum matrix elements Ep1, 
Ep2 in units of [eVAngstrom] 
E_P1,E_P2: Kane's momentum matrix elements EP1, 
EP2 in units of [eV] 
S1,S2: 8-band 
k.p parameters for the conduction band mass (dimensionless) 
 
Note: The S
parameter is also defined in the literature as F
where S = 1 + 2F, e.g. I. Vurgaftman et al., JAP 89, 
5815 (2001). 
F = (S - 1)/2 
Consequently, as one can show, the bowing parameter for S
has the value 2 * F. 
Note: For testing purposes, one might want to input the "zinc blende" k.p 
material parameters into the wurtzite section. 
Then the results of the "wurtzite" k.p Hamiltonian should be the same as 
for the "zinc blende" k.p Hamiltionian. 
However, as it is only possible to input the Rashba-Sheka-Pikus parameters A1,...,A6, 
this works only if it holds for the zincblende N = L - M (isotropic 
symmetry), i.e. L and M are given, N is determined from them. 
The relevant relations are: 
 ! Here, L,M are given, everything else is determined once A1 and A2 
is determined. 
 ! This corresponds to zincblende parameters L,M but with isotropic 
symmetry because is holds: N1 = L1 - M1. 
 !     A1 =   ...        
= L + 1 
 !     A2 =   ...        
= M + 1 
 ! ==> A3 =   A2 - A1    = - N 
 ! ==> A4 = - A3 / 2     = N / 2 
 ! ==> A5 =   A4         
= N / 2 
 ! ==> A6 = SQRT(2) * A5 = N / SQRT(2) 
 
Example: 
 6x6kp-parameters = -6.74d0 -2.18d0 -4.56d0                              
! GaN(zb)  L,M,N=L-M [hbar^2/2m] (zincblende) 
                   
 0.017d0                                             
! GaN(zb)  Delta_so [eV]         (zincblende)
 
 6x6kp-parameters = -5.74d0 -1.18d0  4.56d0
                             
! GaN(zb)  A1 = L2 + 1 = L + 1        , 
A2 = M3 + 1 = M + 1 , A3 = M2 - L2 = M - L            
(wurtzite) 
                  
 -2.28d0 -2.28d0 -3.2244069222106567112678502911981d0 
! GaN(zb)  A4 = (L1+M1-2M3)/2 = -A3/2 , A5 = N1 / 2 = N / 2 , A6 = N2 / 
SQRT(2) = N / SQRT(2) (wurtzite) 
                   
 0d0     
0.00566666666666666666666666666667d0        
! GaN(zb)  Delta_1(cr),Delta_2    ! Delta_so = 0.017 [eV], 
Delta_2=Delta_3=0.017/3=Delta_so/3 (wurtzite) 
                           
 0.00566666666666666666666666666667d0        
! GaN(zb)              
Delta_3                                                                
(wurtzite) 
! Note: The relation N1 = L1 - M1 is due to sixfold 
rotational symmetry. It means isotropic dispersion in the plane perpendicular to 
the c axis. 
! A5 = (L1 - M1) / 2 = (L - M) / 2  = A4       
= -2.28 
! A5 =  N1 / 2 = N / 2            
/= A4 (!!!) =
-3.33 (In zinc blende, we do not have sixfold 
rotational symmetry!!! Thus we have to use N1 and not L1 - M1
when calculation A5.) 
For equations, see p. 42 in PhD thesis of S. Birner. 
  
bow-LO-phonon-energy = 0d0   0d0   
0d0         
! [eV]   low-temperature optical phonon energy 
 |